未来以太网的发展路线图
以太网自上个世纪70年代出现以来,由于其低成本,易部署,兼容性好,方便管理等特点目前已经成为企业网络领域真正的统治者。在过去的40年里,以太网过去一直以10为倍数跨跃式地向前发展,从10Mbps发展到2010年的100Gbps,以及目前正在讨论中的400Gbps,速度提高了40, 000倍。
以太网未来需要解决三个市场需求:
1.运营商和光纤传输网(OTN),必须提供领先的技术满足带宽需求的急剧增长
2.超大型的数据中心,交换机带宽平均2-2.5年翻一番
3.企业网数据中心,未来计划采用云技术
从技术上来讲,以太网以10为倍数向前发展是可行的,但是从投资和成本的角度来看,以10为倍数发展非常不经济,功耗和价格都会很高。2010年,以太网开始以4为倍数发展,出现了40G以太网的标准,未来以太网络服务器会以2为倍数向前发展,网络主干会以4为倍数向前发展,这个全新的发展路线图会对以太网的发展注入新的活力。
IEEE目前正在开发的以太网络标准有2.5Gbps, 5Gbps以太网,主要应用于无线网络接入点;25Gbps,40Gbps,50Gbps以太网主要应用于服务器;100Gbps, 200Gbps以太网主要应用于数据中心网络主干;400G主要用于运营商中心机房,400G以太网的标准预计于2017年颁布。
数据中心内单模光纤和多模光纤通信的技术区别及成本考量
A. 波分复用 (Wavelength Division Multiplexing)
单模光纤通常采用波分复用 (WDM)的方式来增加网络传输速率,2010年发布的100GBase-LR4,采用2芯单模光纤1收1发,能够在一芯光纤上同时复用4个波长,每个波长传输25Gbps。单模光纤传输100Gbps的方案传输距离远,布线成本低,然而,单模光纤需要采用高成本的激光 (LD) 光源收发器,单模光纤的激光收发器价格至少是多模光纤收发器的3倍以上, 功耗至少2倍以上。(备注:来源OFS 2014年数据)
B. 串行传输(Serial Transmission)
传统的多模光纤一般采用串行传输模式,在这种模式下增加以太网的传输速率必须增加每芯光纤/通道的传输速率。 目前以太网最大串行传输速率为10Gbps/通道,IEEE正在制定25Gbps/通道,50Gbps/通道的网络标准,以400G以太网为例,会有25Gbps/通道, 50Gbps/100Gbps通道3个不同的版本,光纤芯数分别需要32芯/16芯/8芯。400G以太网采用的编码方式有NRZ,PAM4,DMT,更高级的编码方式意味着更复杂的电路和功耗,因而成本更高。
C.并行传输(Parallel Transmission)
多模光纤提高网络传输速率的另外一种方法是采用并行传输模式,即通过增加光纤芯数来增加传输速率。2010年发布的100G Base-SR10采用10Gbps/通道的传输方式,10通道接收10通道发送,总共需要20芯光纤。
D. 短波波分复用 (Short Wavelength Division Multiplexing, WDM)
随着100G-NG,200G/400G以太网乃至1T以太网的提出,传统的多模光纤在芯数和距离上成为阻碍未来以太网络发展的瓶颈。短波波分复用技术利用性价比较高的短波的垂直腔面发射激光(VCSEL) 光源,优化的宽带多模光纤 (WBMMF) 能够在一芯多模光纤上支持4个波长,把需要的光纤芯数降低为之前的1/4,同时提高了有效模式带宽(Effective Modal Bandwidth, EMB), 延长了40/100G的传输距离到300米左右。
目前全球96%的数据中心,网络核心区骨干(Spine)交换机到服务器机柜分支(Leaf)交换机的距离在300米以内,因此短波波分复用技术(SWDM)和宽带多模光纤(WBMMF)未来会继续延续多模光纤作为数据中心40/100/400G以太网的主流传输介质的传统。未来通过短波波分复用 (SWDM) 和并行传输技术相结合,只需要8芯宽带多模光纤 (WBMMF) ,就能够支持更高速的应用,比如200/400G以太网。
WBMMF的定义及其核心技术
多模光纤自上世纪80年代进入市场以来,经历了从OM1、OM2、OM3到OM4的演进。网络速率的不断提升,对光收发器的光源要求也越来越高,光收发器的光源从传统的满注入发射(Overfilled lunch)的发光二极管(LED)发展到高性能低成本的垂直腔面发射激光(Vertical Cavity Surface Emitting Laser ,VCSEL),OM3光纤是针对垂直腔面发射激光(VCSEL)光源优化的多模光纤,有效模式带宽(EMB)达到2000MHZ.Km,支持100GBase-SR10距离达到100米, 而OM4光纤有效模式带宽(EMB)相比OM3光纤提高了1倍多,达到4700MHZ.Km,然而支持100GBase-SR10距离仅有150米,相对于OM3光纤,100G以太网传输距离仅仅增加了50%。
进入2010年代,随着100G-NG,200G/400G以太网乃至1T以太网的提出,传统的多模光纤在芯数和距离上成为阻碍未来以太网络发展的瓶颈,而宽带多模光纤(WBMMF)的出现打破了传统多模光纤的技术瓶颈。
首先,它借鉴了单模光纤的波分复用(WDM)技术,延展了网络传输时的可用波长范围,能够在一芯多模光纤上支持4个波长,把需要的光纤芯数降低为之前的1/4。